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EXTERNALLY PRESSURIZED GAS- LUBRICATED JOURNAL 

BEARmGS WITH HERRNBONE GROOVES - LOAD 

CAPACITY AND STABILITY ANALYSIS 

by David P. Fleming 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio 

A small eccentricity analysis was performed to predict load ca- 

pacity and stability. Numerical results were obtained for a range of 

feeding parameter, pressure ratio, groove length and orifice recess 

volume for compressibility numbers from 0 to 50. . These results were 

obtained from a digital computer program. Results showed that the 

addition of herringbone grooving to an externally pressurized bearing 

increases stability, but reduces load capacity at  low compressibility 

numbers. A fully-grooved bearing is more stable than a partially- 

grooved bearing. Orifice recesses reduce stability, especially at high 

compressibility numbers. 

NOMENCLATURE 

a or if ice radius 

C ridge clearance at zero eccentricity 

C coefficient(seeappendix) 

D bearing diameter 

d orifice recess diameter 

e journal eccentricity 

F bearing load component 



dimensionless load component, l?/cpaLD 

dimens i ~ n l e s s  complex function of < 
ratio of ridge clearance to groove clearance when bearing is 

concentr ic, (a/hJo 

local film thickness over groove, C(H + E cos 0") 

local film thickness over ridge, C(l  + E cos O*) 

imaginary part of exper s s ion 

specific heat ratio 

bearing length 

length of bearing outboard of orifices 

total axial length of grooves 

rotor mass per bearing 

lubricant flow rate per unit length 

dimensionless rotor mass, 

dimensionless lubricant flow rate, eq. (12) 

number of orifices per bearing 

dimensionless pressure, p/pa 

pressure 

atmospheric pressure 

bearing radius 

gas constant 

real  part of expression 

absolute temperature 

time 



surface speed of grooved member 

surface speed of smooth number 

V orifice recess volume 

v orifice recess volume, Nv/rDEC 

W total bearing load 
- 
W dimensionless load, W/epaLD 

z axial coordinate measured from end of bearing 

a ratio of groove width to width of groove-ridge pair 

ad orifice discharge coefficient 

P groove angle (fig, 1) 

4 2 inherent compensation factor, a /dC 

E eccentricity ratio, e/C 

c dimensionless axial coordinate, z/L 

%f  Lf/2 L 

6 angular coordinate 

6 %  rotating angular coordinate, B - w d  
A bearing compressibility number, 6pwR2/4a~  

2 
, 

As 
feeding parameter, 6 pNa 2 

At 

P lubricant dynamic viscosity 

P local lubricant density 
r 

CT , frequency number, 12pw R 
P 

50 attitude angle 



0 rotational speed 

0 
P 

whirl frequency 

Subscripts': 

c condition immediately downstream of orifice 

g groove region 

n condition at which ft = 0 

r radial; ridge region 

s condition upstr eam of or ifice 

t tangential 

z axial direction 

8 circumferential direct ion 

0 zero eccentricity 

Superscripts : 

-t value of coordinate infinitesimally greater than b&se value 
- value of coordinate infinitesimally less than base value 

INTRODUCTION 

Gas-lubricated bearings may be divided into two broad classifica- 

tions: self -acting and externally pressurized. In a self -acting bearing, 

the film pressure which supports the load is developed by the relative 

motion of the bearing parts and is proportional to  the fluid viscosity. 

When there is no motion, the load capacity is zero. In contrast, in an 

externally pressurized bearing, lubricant gas under pressure is supplied 

from an external source. Thus, this type of bearing can have a sub- 

stantial load capacity even when stationary. 
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Because of the low viscosity of gases, self-acting gas- lubricated 

bearings will carry a much smaller load than oil-lubricated bearings. 

For the same reason, they a re  much more susceptible to self-excited 

instability, commonly known as fractional frequency whirl. A major 

part of the research in gas-lubricated bearings has been directed to- 

ward development of bearing configurations that will operate stably. 

Some of these designs, for example, tilting pad bearings, achieve 

stability at the expense of steady state load capacity. One type of self- 

acting bearing that has good stability, and can also carry" a higher load than 

a plain bearing, is the herringbone grooved bearing (refs. I to 3). Ex- 

ternally pressurized bearings also have a higher load capacity than 

plain self-acting bearings, and also a r e  fairly stable (ref. 4). 

The principal disadvantage of the externally pressurized bearing 

is the need for continuous supply of pressurized gas. The herringbone 

bearing, on the other hand, needs no external supply, but has no load 

capacity at zero speed. The two bearing types could be combined; for 

example, a herringbone grooved rotor could be installed in an exter- 

nally pr essuriz ed bearing. External pressurization could be used for 

startup; upon reaching operating speed the external supply could be shut 

off, and the unit operated as a self-acting herringbone bearing. Alter- 

nat ely, the external supply could be maintained; the inward pumping 

of the herringbone grooves would reduce the amount of gas needed from 

the external supply. 

Previous analyses have evaluated the load capacity and stability 

of herringbone grooved bearings (refs. 1 and 2) and of externally pres- 
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surized bearings (refs. 4 to 6). Vohr and Chow determined the load 

capacity of her ringbone grooved bearings in reference 1; their analysis 

was used to evaluate stability in reference 2. Experimental stability 

data for herringbone bearings were obtained in reference 3. The data 

showed that the analysis predicts the onset of instability consistently; 

how ever, actual instability occurred at somewhat lower speeds than 

predicted. 

The load capacity of externally pressurized bearings was deter- 

mined by Lund in reference 5. In a later report (ref. 6), Lund calcu- 

lated the stability of externally pressurized bearings operating at finite 

eccentricities. Here he included the effect of orifice recess volume, 

and attempted to account for having a finite number of orifices, rather 

than assuming a line source. Refer ence 4 evaluated the stability of an 

unloaded externally pressurized bearing, and included the effect of 

orifice recess volume a s  in reference 6. 

All of these analyses a re  similar in that they use a small eccen- 

tricity perturbation, and solve for the perturbed pressure using a 

separation of variables scheme. Thus it is easy in principle to combine 

the solutions to find the load capacity and stability of a herringbone bear- 

ing with external pressurization. 

The objectives of this investigation a r e  to determine analytically 

the steady-state and stability characteristics of externally pressurized 

herringbone grooved bearings. 'Various combinations of supply pres- 

sure, feeding parameter, orifice recess volume, and groove length 

will be explored, 
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ANALYSIS 

The analysis will be outlined briefly. More details a re  in refer- 

ence 7. The bearing configuration to be analyzed is shown in figure 1. 

It consists of a double row e~ternal ly  pressurized bearing with herring- 

bone grooves. The grooves are shown on the rotor, but the analysis 

is unchanged if they a re  on the bearing. The herringbone grooves may 

be partial, a s  shown, or they may extend the full length of the bearing. 

For simplicity of presentation, it will be assumed that the rows of 

orifices a re  closer to the midplane of the bearing than a re  the herring- 

bone grooves. This includes the limiting case of the orifice rows 

coinciding with the ends of the grooves. Extension to other cases is 

straightforward. It will be further assumed that the bearing is sym- 

metric about the midplane. With this assumption, only half the bear- 

ing need be analyzed. Other assumptions are that the number of 

herringbone grooves is large (ref. 1) and that there a r e  enough orifices 

so  that each row may be approximated by a line source. 

The analysis of reference 1 applies, with the exception that the 

axial mass flow is no longer zero, as it was in the herringbone bearing 

without or if ices. Thus, the differential equations and boundary condi- 

tions must be modified to account for axial mass flow in the bearing and 

flow through the orifices. 

To conveniently obtain solutions for  steady whirling, which a r e  

needed for the stability analysis, a rotating coordinate system is intro- 

duced by 

@ * = @ - U  t 
P (1)- 



8 

in which o is the frequency of steady circular whirling. The dif- 
P 

ferential equation to be solved, from reference 1, is 

1 a - -[% sin p + (fibzg -d)Yzr)a cos p - pRuhr s i n 0  
R ae* Or 

This and subsequent expressions were derived for the herringbone 

grooved section of the bearing, but may also be  used for the smooth 

section by setting h = hr. 
g 

The expressions for the mass  flows ?ngr, 

mzg'  and *zr a r e  in the appendix. The procedure now is to  approxi- 

mate the dimensionless film pressure P = p/pa according t o  

where < is the dimensionless axial coordinate z/L and G is a com- 

plex function of < . This is the classical small  eccentricity perturba- 

tion solution originated by Ausman (ref. 8). Equation (3) and the ex- 

pressions for mass  flows from the appendix a r e  substituted into equa- 

tion (2). The resulting expression is considered an identity in the 

eccentricity rat io E, and a separate equation written for each power of 

E which appears, Powers of E higher than 1 a r e  neglected; thus, two 

equations result. The zero order equation can be written 

This may be integrated once immediately to yield 

amzg0 + (1 - a)qFzrO =% z0 = constant (5) 



In terms of the dimensionless pressure Po, equation (5) for an iso- 

thermal bearing becomes 

- 1 2 , 2 6 ? , ~ 7 % ~ ~ ~  
- = constant (6) 

c3p: el 
The first  order equation is 

where the @lvs are  constants given in the appendix. They differ from 

the constants given in reference 1 because dPO/d< is not constant in 

a bearing with orifices. The constant A is the standard gas bearing 

compressibility number, and a is a dimensionless representation of 

the whirl frequency. 

Boundary conditions. - At the end of the bearing ([ = 0) 

P =  1 

and 



At the bearing midplane (< = I/@, by symmetry. 

Variables Po and G a re  continuous throughout the bearing film, 

but there will be discontinuities in the derivatives dPo/d< and dG/d<. 

These a re  caused at < = by the end of the herringbone groove pat- 
g 

tern, and at 6 = cf by the gas flow through the orifices. 

At the orifices, conditions a r e  similar to those in an ungrooved 

externally pressurized bearing, analyzed in reference 5. One im- 

portant difference is that in an externally pressurized herringbone 

bearing, the gas flow through the orifices can be in either direction, 

depending on the supply pressure and the pumping in the herringbone 

grooves. Boundary conditions on pressure a re  found by balancing the 

gas flow through the orifices with that through the bearing film. The 

results a re  

in which 6; denotes a value of 5 infinitesimally greater than sf. 
The dimensionless gas flow m is given by the usual orifice flow equa- 
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tions, with inherent compensation effects accounted for a s  in refer- 

ence 6. 

The flow when the bearing is concentric, mo, is obtained by using the 

concentric values PC = POc and hr = C in equations (12) and (13). 

The feeding parameter At appearing in equations (10) and (1 1) is de- 

fined by 



and + in equation (1 1) by 

NV L - VL 
*I=---- nDLC POcD POcD 

In differential equation (6) for Po, dp0/d< is the highest order 

derivative. Thus, the discontinuity in dP0/d< at < = < need not be  
g 

found explicitly. The discontinuity in dG/d< at < = < may be deter- 
g 

mined by noting that WZl = + (1 - a)%uzrl is continuous at this 

point. The perturbed mass  flows and wzrl may be found by 
z g l  

differentiating the expressions for % a n d m Z r  with respect to  E 
zg 

and then setting E = 0, e .g . ,  

The expression for em, as well as for the other C 's, is in the 

The result for dG/d< is 

appendix. 

d~ 
P 

d< 

Solution of the differential equations, - The constant in equation (6) 

n t m O ~  em - - dG 

-I- 2 POR R 2 

is determined by the gas flow through the orifices. From equation (12), 

<=<, < = C g  d< <=<, 

+-  I 

with E = O9 



Combination of equations (14) and (17) with equation (6) gives 

This differential equation contains two unknowns: the pressure Po 

and the mass  flow mo. The procedure for determining Po and mo 

is : (1) assume a value for  mo; (2) integrate equation (18) from < = 0 

to < = C f ,  using a forward integration scheme such as Runge-Kutta 

(for < > T f ,  ".'zo = 0 and Po = Pot); (3) calculate a new value of 

mo f rom the value of POc = PO(qf) just found (eq. (13)); (4) compare 

with the previous mo; if  different, repeat steps 2-4 until convergence 

is obtained. 

Differential equation (7) for  G is solved numerically by the 

method detailed in reference 4. 

Determination of load and stability. - The radial and tangential 

components of the bearing load a r e  found by integrating the film pres- 

su re  over the bearing area .  

Substitution of equation (3) for P and performance of the O* integra- 

tion yields, in dimensionless variables, 
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The dimensionless forces in equation (19) are defined by 

F_ 

and 

The resultant bearing load W and attitude cp may now be calculated. 

cp = tan- I(;) 

Figure 2 illustrates the relations among these quantities. 

When the bearing is operating stably, the frequency number a is 

zero. To determine the threshold of instability, a is varied until 

ft  = 0 (ref. 9). The bearing neutral stability condition is then found by 

equating the centrifugal force, due to the whirling bearing mass, to  the 

radial bearing force. 

2 Meo = F pn rn  

The subscript n denotes the condition where ft = 0. 

A dimensionless bearing mass may be defined by 



- 
In terms of previously calculated quantities, M for the neutral sta- 

bility condition is given by 

Reference 9 shows that zn is an upper limit of hl for stability i f  the 

quantity aft//ao is negative at o = on; conversely, hiln is a lower limit 

for stability if aft/ao is positive at cr = on. 

RESULTS AND DISCUSSION 

The analysis of the preceding section has been used to obtain 

steady state and stability information for a number of externally pres- 

suriz ed herringbone bearing configurations. Results were obtained 

utilizing the digital computer program presented in reference 7. The 

computer program was checked by running cases for a herringbone 

grooved bearing (without orifices) and a plain externally pressurized 

bearing (without grooves). Results for the test cases agreed well with 

those of references 1 and 4. 

Because of the large number of parameters that may vary in a 

bearing, the effects of all of them were not investigated. Rather, a 

number of the parameters were fixed. The basic bearing chosen for 

study has a length to  diameter ratio of 1 with a single row of orifices 

at the bearing midplane. No inherent compensation effects were in- 

cluded. The herringbone groove angle P is 30°, the groove width 

fraction a, 0. 5, and the groove clearance to land clearance ratio, H, 

2.1. The values approximate the optima found in reference 1 for maxi- 

mizing the radial load component, Three groove length fractions were 
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investigated: 0 (ungrooved), 0. 5, and 1 (fully grooved). The feeding 

parameter At was  varied from 0 (no orifices) to 4, and the supply 

pressure ratio from 1 to 5. 

Steady state results. - Figure 3 shows the effect sf the feeding 

parameter At on load capacity. Figure 3(a) is for a pressure ratio 

Ps of 1, which means the bearing is actually unpressurized. For this 

case, the load capacity W is greatest when there a re  no orifices 

(.At = 0); W deereases with increasing At. A partially grooved bear- 

ing will carry a higher load than a fully grooved bearing. The un- 

grooved bearing is not shown for this case, since it is unsuitable for 

most uses because it is unstable when not loaded. 

Figure 3(b), for a pressure ratio of 2, shows that at low values 

of A (less than about 5) the load capacity now increases with increas- 

ing feeding parameter At. At higher A the order is reversed for the 

grooved bearings, that is, load capacity deer eases with increasing At, 

a s  was the case for the unpressurized bearing. The partially grooved 

bearing's load capacity again exceeds that of the fully grooved bearing. 

For A less than 13 to 33 (depending on feeding parameter) the un- 

grooved bearing has the highest load capacity. At higher A, the load 

curves for the ungrooved bearings level off, while those for the grooved 

bearings continue to increase. This, of course, is because of the in- 

creasing self- pressurization by the inward pumping herringbone grooves. 

The load curves for the grooved bearings show an interesting phe- 

nomenon in that they have a pronounced depression at an intermediate 

value of A. This depression occurs when the pumping of the herring- 
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bone grooves raises the pressure on the bearing side of the orifices to 

the pressure that is supplied externally. Near this point, the derivative 

of mass flow with respect to bearing orifice pressure PC becomes very 

large (eq. (13)). That is, a very small change in PC causes a large 

change in orifice flow. Consequently, the bearing is not a s  well 

99compensatedv and the stiffness is reduced. 

It should be pointed out that for an actual bearing the loss of the 

load capacity will not be as great a s  predicted by figure 3@). This is 

because the differ ence Arn/4(pc/Ps) for finite A(Pc/PS) doesn't ap- 

proach the infinite value of the derivative am/a(pc/Ps) Also, the 

orifice flow equations (13) neglect viscous effects. These become sig- 

nificant at low flow rates, and would reduce the value of am/a(pc/Ps) 

near Pc = Ps. 

Load curves for a pressure ratio of 5 a r e  plotted in figure 3(c). 

The trends of figures 3(a) and (b) a re  continued here. Load capacity 

increases with increasing At out to  the highest compressibility 

aumber plotted. No depressions occur in the curves, a s  in figure 3(b), 

because the A value where PC = Ps is beyond the boundary of the 

figure . 
Figures 3@) and (c) show that the addition of grooves to an exter- 

nally pressurized bearing lowers the load capacity at low compressi- 

bility numbers, but at higher A the load can be increased. The com- 

pressibility number where the grooved bearingvs load capacity first 

becomes greater than that of the ungrooved bearing varies with the 

pressure ratio, length of grooves, and feeding parameter. 



The effect of pressure ratio on load can be determined by com- 

paring figures 3(a), (b), and (c). Load capacity generally increases with 

pressure ratio. The load capacity for Ps = 2 is little different than 

for Ps = 1 (unpressurized), particularly at higher compressibility 

numbers. Near the value of A where PC = Ps (depression in load 

curve) the load capacity for Ps = 2 can drop below that for Ps = 1. 

Increasing the pressure ratio to 5 results in a relatively large in- 

crease in load capacity, particularly at low compressibility numbers 

and large feeding parameters. 

Attitude angles a re  plotted in figure 4 for a fully grooved bearing 

with a pressure ratio of 2. Except at quite low compressibility numbers 

(A < 5), attitude angles a re  smaller for smaller values of the feeding 

parameter A t  The behavior is generally similar to  an ungrooved ex- 

ternally pressurized bearing, with two exceptions. At zero speed 

(A = 0) the grooved bearing has a small negative attitude angle. In 

addition, when the pumping of the herringbone grooves increases the 

pressure PC to near the supply pressure P the attitude angle r ises  s' 
rapidly. This corresponds to  the drop in load capacity mentioned 

earlier. 

Because the. herringbone grooves act as a pump, the gas flow 

through the bearing changes with compressibility number. Figure 5 

shows the flow through the bearing, mo, for 3 values of the feeding 

parameter At, at an external supply pressure ratio of 2. 
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For At = 0, the mass flow is always 0. A negative value of mo 

indicates the gas flow is from the pressurized supply to the bearing, 

while positive mo indicates the bearing is pumping gas into the pres- 

surized supply. Flow doesn't change with compressibility number in 

the ungrooved bearings. To avoid confusion, these curves have not 

been extended to A = 0. At zero speed (A = O), gas consumption in- 

creases with increasing length of grooves. This is because a grooved 

portion of a bearing has a larger flow area, and thus offers less re- 

sistance than an ungrooved portion. 

Stability results. - In order to keep the figures presented to a 

reasonable number, stability information will not be given for all com- 

binations of groove length, pressure ratio, feeding parameter, and 

orifice recess volume which were investigated. Instead, the basic 

bearing mentioned at the beginning of this section will be further de- 

fined, and results presented for variations of each of the preceding 

4 parameters from their basic values. These basic values a re  

L /L = 1, Ps = 2, At = 2, and v = 0. 
g 

Figure 6 shows the variation of stability with groove length for 

compressibility numbers from 1 to 50. Stability, as measured by the 

dimensionless mass M, generally decreases with increasing A, and 

increases with groove length. Above a compressibility number of 15, 

the stability of the fully grooved bearing increases sharply, and be- 

comes much greater than that of either the half-grooved or  ungrooved 

bearing . 
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The stability curves of the fully-grooved and half-grooved bearings 

have distinct depressions near A = 14 and A = 27, respectively. 

These depressions correspond to the depressions in the load curves of 

figure 3(b). As was discussed regarding the load capacity curves, the 

drop in stability in an actual bearing whirling with a finite eccentricity 

would probably not be as  drastic as figure 6 predicts. With an actual 

bearing, problems with this low stability region can 'probably be avoided 

by passing through the region rapidly, either by accelerating the bear- 

ing rotor or changing the supply pressure. 

Near a compressibility number of 38, the stability curve for the 

half-grooved bearing becomes very steep, in effect imposing an upper 

speed limit even for very small values of M. This limit generally 

occurred between compressibility numbers of 20 and 40 in the half- 

grooved bearings. A similar limit was not observed for fully grooved 

or ungrooved bearings within the range of compressibility numbers in- 

vestigated. 

The effect of the feeding parameter At on stability is shown by 

figure 7. At low compressibility numbers, (A < 5), higher feeding 

parameters give greater stability. Near A = 14, where the herring- 

bone pumping pressure becomes equal to the supply pressure, the 

order is reversed, with the no-orifice bearing (At = 0) most stable. 

At high A (>20), there is no clear trend. The greatest stability is 

offered by At = 2, and the least by At = 4. 
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Figure 8 shows the effect on stability sf a variation in supply pres- 

sure ratio. Included in this figure is the curve for At = 0; the re- 

mainder of the curves a re  for At = 2. For low compressibility numbers 

(A < lo), Ps = 5 provides the greatest stability; the curve is beyond 

the maximum ordinate of the figure. Stability decreases with decreas- 

ing pressure ratio. The plain herringbone bearing (At = 0) is between 

Ps = 1 and Ps = 2 (Ps = 1 denotes a bearing whose supply lines a r e  

open to the atmosphere). For compressibility numbers between 10 

and 20 there is no clear optimum. At high A, pressure ratios of 1 and.2 

a re  more stable than Ps = 5 or the no-orifice bearing. The figure 

shows that the addition of orifices to a herringbone bearing, without 

pressurization, lowers the stability at low compressibility numbers, 

but can increase the stability at high A. 

The decrease in stability due to a small orifice recess is shown in 

figure 9. For compressibility numbers less than 14 there is only a 

small loss of stability. At higher A, however, the stability for a re-  

cess volume ratio of 0.2 continuously decreases, while the stability for 

v = 0 increases from A = 14 to A = 40. This behavior at higher com- 

pressibility numbers is typical of the effect of recess  volume on the 

bearing configurations studied. 

Multibranch curves. - For all cases of finite recess volume in 

grooved bearings, there was more than one neutral stability condition 

found at the higher compressibility numbers. That is, for a given A, 

there was more than one whirl frequency which yielded ft  = 0. Fig- 

ure 10 illustrates this for a feeding parameter of 2, pressure ratio of 5, 



and recess volume ratio of 0.2. The controlling curve will be the 

lowest; this will give the maximum value of at which the bearing 

will be stable. Therefore, in using the analysis to determine stability, 

one must use some caution to be certain the smallest value of Gn has 

been found. 

SUMMARY OF RESULTS 

A small eccentricity analysis was performed to determine the 

steady state and stability characteristics of externally pressurized 

bearings with herringbone grooves. Compressibility numbers from 

0 to 50 were investigated. The following results were obtained for a 

bearing with a single row of orifices and a length/diameter ratio of 1: 

1. The addition of herringbone grooves to an externally pres- 

surized bearing increases the bearing's stability. Grooving reduces 

load capacity at  low compressibility numbers but increases load ca- 

pacity at high compr essibility numbers. 

2. The fully grooved bearing is generally more stable than the 

partially grooved bearing. This is especially true at high compressi- 

bility numbers. However, the partially grooved bearing has a higher 

load capacity. 

3. At low compressibility numbers, stability increases with in- 

creasing supply pressure and feeding parameter. At high compressi- 

bility numbers, there is no clear relation of stability with feeding 

parameter and supply pressure. 
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4. Load capacity and stability decrease, and the attitude angle in- 

creases near the speed where the pressure due to the herringbone 

groove pumping equals the external supply pressure. This is at least 

partly due to  assumptions in the analysis, 

5. Orifice recesses decrease stability. The effect is marked at  

high compreseibility numbers, When there a r e  orifice recesses, more 

than one neutral stability condition can exist at high compressibilit& 

numbers. The controlling condition is that which gives the lowest 

dimensionless mass for neutral stability. 



APPENDIX - EXPRESSIONS FOR BEARING MASS FLOW AND 

DIFFERENTIAL EQUATION COEFFICIENTS 

MASS FLOW EXPRESSIONS USED IN EQUATION (2) (FROM REF. 1) 
0 

- 6p(1  - @)(Up - Ug)(hg - hr)sin/3 cos /3 1 
6fn =P 

h3 r 1 a~ 
z r  3 

3 [.(I: - h g s i n  /3 cos /3 - - 
12p a h r  + (1 - a)hg R ae 

+ 6pa(Up - Ug)(hg - hr)sin /3 cos B) 

ap - a($ - h:)sin /3 cos /3 - 
az 



DIPFERENTLAL EQUATION COEFFICIENTS 

a ( 1  - a)(H3 - 1)(H - 1)sin  @ c o s  @As 
@ = 

P 
3 H + a ( 1 -  a ) ( f ~ ~  - I ) ~  sin2@ 

2 a ( l  - a)(H3 - s i n  @ cos  @ L e n  =- - 
a 

3 2 R 
H + a ( l  - a)(H3 - s i n  P 

= -  ( + ( I  - a ) H  
4b 

2 H3 + a ( 1  - a)(H3 - 1 r  s i n  @ 

2 
- 

a ( 1  - a)(H3 - 1)(H - l)As s i n  @ 

e 4 c  - - 
3 R 

H + a ( l  - a)(H3 - $2 sin2@ 

3 2 t5 = H + a (1 - a)(H3 - 
cos @ (I,r 3 2 H + a - a - 1) s i n  6 



In the ungrooved portion of the bearing, these coefficients become: 
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Figure L - Externally pressurized herringbone bearing. 

Attitude 

Figure 2. -Notation for eccentric bearing. 
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Figure 3. -Effect of feeding parameter At on load. LID = 1, LflL = 1, p = 30°, a = 0.5, H = 2.1. 
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Figure 4. - Effect of feeding parameter o n  attitude angle. 
L91L=1, P s = 2 ,  L ID-1,  L f l L=1 ,P=300 ,a=0 .5 ,  H=2.1. 

Compressibility number, A 

Figure 5. - Gas flow through bearing. PS = 2, LID = 1, 
LflL = 1, P = 30°, a = 0.5, H = 2.1. 
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Compressibility number, A 

Figure 6. -Effect of groove length on stability. PS = 2, At = 2, v = 0, LID = 1, 
LflL = 1, P = 304 a = 0.5, H = 2.1. 
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Figure 7. -Effect of feeding parameter on stability. PS = 2, L IL = 1, v = 0, 
LID- 1, Lf lL= 1, P=30°, a-0.5, H=2.1. 
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Compressibility number, A 

Figure 8. - Effect o f  pressure ratio on  stability. At = 2, L IL = 1, 
v=O, L ID= 1, Lf lL= 1, 8=30°, a=O.5, Hn2.1. 9 

Compressibility number, A 

Figure 9. -Effect of recess volume on stability. Ps = 2, At = 2, LglL = 1, 
p = 30°, a = 0.5, H = 2.1. 



Figure 10. - Multi-branch curves. v = 0.2, PS = 5, At = 2, LID = 1, LflL = 1, 
0 = 30°, a = 0.5, H = 2.1. 




